
The design of the IEEE 802.12 coding scheme

Simon E.C. Crouch James A. Davis Jonathan Jedwab

30 December 2004 (revised 1 August 2006)

Abstract

In 1995 the IEEE approved the 802.12 standard for data transmission at 100-
Mbit/s using the Demand Priority network access protocol. 100VG-AnyLAN products
conforming to this standard offered an upgrade path for Ethernet and Token Ring
networks, without requiring new building wiring. A key factor in the approval of the
802.12 standard was the demonstrated error detection properties of its coding scheme.
In particular, the coding scheme allows the detection of error bursts affecting encoded
data carried on four parallel conductors, using nothing more than the standard IEEE
32-bit cyclic redundancy check applied to the unencoded data. Although these error
detection properties were presented for verification as part of the standards process, for
many years commercial considerations prevented public disclosure of how the code was
actually found. These considerations no longer apply, and in this paper we explain in
detail the design principles of the code, combining geometrical insight, linear algebra,
combinatorial reasoning, and computer search.

Keywords
cyclic redundancy check, error detection, polynomial, IEEE 802.12, 100VG-AnyLAN

1 The code design problem for IEEE 802.12

In 1992 the Higher Speed Study Group of IEEE 802.3 began considering technical propos-
als to increase the speed of 10-Mbit/s Ethernet networks by a factor of ten, to 100-Mbit/s.
A proposal that almost, but not entirely, retained the original Medium Access Control
(MAC) protocol was standardised in IEEE 802.3u in 1995 and marketed as Fast Ether-
net. Also in 1995, an alternative proposal using the new Demand Priority MAC protocol
[1] was standardised in IEEE 802.12 [2] and marketed as 100VGAny-LAN [3]. Although
Fast Ethernet ultimately prevailed over 100VG-AnyLAN in the marketplace, both tech-
nologies were responsible for the sale of millions of network devices: in 1995 alone, Fast

S.E.C. Crouch is with the Epidemiology and Genetics Unit, Department of Health Sciences, University
of York, York YO10 5DD, United Kingdom.

J.A. Davis is with the Department of Mathematics and Computer Science, University of Richmond, VA
23173. He is grateful for support from NSA grant MDA 904-03-1-0032.

J. Jedwab is with the Department of Mathematics, Simon Fraser University, 8888 University Drive,
Burnaby BC, Canada V5A 1S6. He is grateful for support from NSERC of Canada.

1

Ethernet accounted for 665,000 adapter sales while 100VG-AnyLAN accounted for 218,000
(reported in [4], quoting market research from IDC).

The basic operating environment of IEEE 802.3 at 10-Mbit/s involves two conductors:
a first for data transmission, and a second for collision detection using the Carrier Sense
Multiple Access with Collision Detection MAC [5]. Using “Manchester” encoding, a data
‘1’ is transmitted as the code symbol pair 01 and a data ‘0’ is transmitted as the code
symbol pair 10. A data rate of 10-Mbit/s is achieved by transmitting code symbols at a
rate of 20-Mbit/s over a single conductor. The rapid proliferation of IEEE 802.3 networks
in the late 1980s was spurred by the realisation that it was often unnecessary to incur the
significant expense of installing new data cabling: each of the required conductors could
be a twisted pair of copper telephone wiring originally intended for voice use.

Although IEEE 802.3 requires only two conductors, surveys in the early 1990s revealed
a large installed base of Category 3 telephone cabling comprising four twisted pairs of wires,
with two of the twisted pairs remaining unused for 10-Mbit/s transmission purposes. A key
objective of IEEE 802.12 was to allow operation at 100-Mbit/s by making use of all four of
these twisted pairs (also known as voice-grade cabling, hence the trade name “VG”), and
this is the physical environment studied in this paper. We note however that IEEE 802.12
was also designed to operate in two less challenging environments, namely: two twisted
pairs of shielded cabling (as implemented in Token Ring networks), and a single optical
fibre (allowing connection of widely separated hubs and end nodes) [6]. Furthermore the
IEEE 802.12 codewords for a four-conductor environment can easily be multiplexed to
obtain the codewords required for a two-pair or single-fibre environment [7].

The Demand Priority MAC allows all four conductors to be used for data transmis-
sion simultaneously. Various binary and multilevel transmission schemes were considered
as more efficient alternatives to 1-bit/2-bit Manchester encoding. The scheme selected
for IEEE 802.12, after careful consideration of radiated emission and noise susceptibility
properties [6], was 5-bit/6-bit encoding. With this choice, code symbols are transmitted
at a rate of 30-Mbit/s over each conductor to give a data transmission rate of 25-Mbit/s
over each of four conductors, for a combined data transmission rate of 100-Mbit/s. For
details on how the code symbol transmission rate was increased, from 20-Mbit/s over a
single conductor to 30-Mbit/s over each of four conductors, while dealing with issues of
cross talk, see [6].

The code design problem for IEEE 802.12 is to select a particular mapping of 5-bit
data values to 6-bit code values in order to satisfy four constraints simultaneously:

1. the number of transmitted 0’s should closely match the number of transmitted 1’s for
each conductor, in order to achieve near-perfect DC balance and so control baseline
wander at the receiver

2. the run length of transmitted symbols (namely the maximum number of identical
consecutive symbols) should be small for each conductor, in order to ensure a high
density of signal transitions and so assist accurate clock recovery at the receiver

3. the code should guarantee the detection of errors arising from the corruption of up
to three code bits located anywhere within a single encoded data packet, in order to

2

satisfy IEEE 802 Functional Requirement 5.6.3 on Hamming distance (see Section 4)

4. the code should guarantee the detection of a significant duration of burst error arising
from the arbitrary corruption of code bits occurring across all four conductors in
parallel.

Table 1 shows the actual choice of 5-bit/6-bit code standardised in IEEE 802.12. We
shall describe how this code was designed to satisfy each of the above constraints in turn.

2 DC balance

Consider the stream of data bits shown in Figure 1, with the order of bit transmis-
sion from left (first) to right (last). The data stream is split into five-bit data words
D7, D6, . . . , D0 prior to encoding using the 5-bit/6-bit code. The resulting stream of code-
words C7, C6, . . . , C0 is assigned to the four parallel conductors in a cyclic manner, with
the order of transmission of code bits on each conductor from bottom (first) to top (last).

We wish to satisfy the constraint of DC balance for each conductor. There are
(
6
3

)
= 20

6-bit codewords that are balanced, namely those having weight 3, and clearly all of these
should be included in the 5-bit/6-bit code. We then assign one weight 2 codeword and
one weight 4 codeword to each of the remaining 12 5-bit data words. For each conductor
independently, an alternation rule is implemented: the first time that any one of these 12
data words is to be encoded we choose the codeword of weight 2; subsequently, whenever
an unbalanced codeword is required (corresponding to any of the 12 data words), we
choose the opposite weight to that previously selected for that conductor. In this way,
the sequence of unbalanced codewords on each conductor (ignoring balanced codewords)
alternates between weight 2 and weight 4, giving near-perfect DC balance.

At this point we have a free choice as to which 12 of the
(
6
2

)
= 15 codewords of weight

2 and which 12 of the 15 codewords of weight 4 should be included in the code, as well as
to the assignment of codewords to data words.

3 Run length

Given that all balanced codewords are included in the code, the run length is at least six
because the codewords 111000 and 000111 can be transmitted on the same conductor in
succession. We now force the run length to be exactly six by excluding the unbalanced
codewords 111100, 000011, 110000, and 001111 from the code.

It remains to exclude one further weight 2 and weight 4 codeword.

4 Single-code-bit error detection

Before describing how single-code-bit errors are detected in IEEE 802.3 and IEEE 802.12
we shall review the algorithm for calculating and checking cyclic redundancy check (CRC)
bits.

3

The 32-bit CRC algorithm uses a fixed polynomial g(x) of degree 32 with 0–1 coeffi-
cients, which in the case of an IEEE 802 Local Area Network is the primitive polynomial

g(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1. (1)

Let an unencoded data packet comprise the bits fk−1, fk−2, . . . , f0, where fk−1 is the first
transmitted bit. We associate the polynomial F (x) =

∑k−1
i=0 fix

i with these bits and define
the CRC check polynomial for these bits to be

C(x) =
(
x32F (x) + (xk + 1)L(x)

)
mod g(x),

where L(x) =
∑31

i=0 xi and calculations are carried out in Z2[x]. The 32 bits associated
with C(x) are appended to the k data bits (fi), giving a transmitted message polynomial
M(x) = x32F (x) + C(x). Suppose the transmitted message suffers a corruption in transit
(possibly affecting the CRC bits themselves), so that the received message polynomial is
M ′(x) = M(x) + E(x). The CRC algorithm, in effect, calculates the value of M ′(x) mod
g(x) and compares it with the value of M(x) mod g(x) that would be received in the
absence of transmission errors. Note that the value M(x) mod g(x) depends only on k,
not on the data bit values (fi). The corruption is detectable (although not correctable)
provided that M ′(x) mod g(x) 6= M(x) mod g(x):

the error E(x) is detectable by the CRC algorithm if and only if E(x) mod g(x) 6= 0.
(2)

It follows from (2) that any error burst affecting 32 or fewer consecutive data bits is
detectable by the CRC algorithm. Furthermore the 32 check bits of the CRC allow certain
patterns of widely separated single-code-bit errors to be detected. In the case of IEEE
802.3, each data packet contains at most 1518 octets (8-bit data groups). There are no
solutions to the polynomial equation

(1 + xr) mod g(x) = 0 where integer r satisfies 0 < r < 8 · 1518

because g(x) is primitive, and by computer search [9] neither are there any solutions to
the polynomial equation

(1 + xr + xs) mod g(x) = 0 where integer r, s satisfy 0 < r < s < 8 · 1518.

Therefore any two or three single-code-bit errors in an IEEE 802.3 data packet are de-
tectable by the CRC, as required by IEEE Functional Requirement 5.6.3 [8]: “A minimum
of four bit cells in error shall be necessary for an undetected error to occur (Hamming
distance 4)”. Note that IEEE 802.3 does not contain any provision for declaring a data
packet to be in error on the basis of receiving an invalid Manchester-encoded codeword 00
or 11, and so single-code-bit errors must be assumed to lead to single-data-bit errors in
IEEE 802.3.

In contrast, in IEEE 802.12 the physical layer is able to notify the Demand Priority
MAC of invalid codewords, namely codewords that do not appear in the 5-bit/6-bit code
table. An error that changes one or more bits of a codeword to produce another valid

4

codeword induces an error in the original data word. For example, if the data word 01011 is
encoded to 111001 according to Table 1, and one code bit is corrupted during transmission
so that the received codeword is 011001, then the decoded data word is 10110. The effect
of the single-code-bit error is to induce the data error 01011 + 10110 = 11101. In general
the consequence of one or more single-code-bit errors affecting a given 6-bit codeword,
if the resulting codeword is valid, is to induce an error a(x) of degree less than 5 in the
decoded data. (IEEE 802.12 also specifies a stream cipher to be added to the data bits
prior to encoding in order to avoid repetitive data patterns, and the same stream cipher
bits are added to the decoded data. This affects the induced data error for a particular
data word, but does not alter the set of induced data errors across all data words under a
particular corruption such as change of the first transmitted bit of a codeword. Since we
are only concerned with the latter we can ignore the stream cipher in our error analysis.)

IEEE 802.12 specifies a packet size of either 1518 data octets for use with IEEE 802.3
packets, or 4096 data octets for use with Token Ring packets. CRC check bits are calcu-
lated using the polynomial (1), but are applied to the data prior to 5-bit/6-bit encoding.
Although a further CRC applied to the encoded bits would have greatly facilitated error
detection in IEEE 802.12, this was considered in the standardisation process to be an
unacceptable complication to the protocol.

There are three methods by which transmission errors can be detected in an IEEE
802.12 packet:

1. one or more invalid 6-bit codewords

2. violation of the alternation rule on one or more conductors (for example, two weight 4
codewords on a particular conductor separated only by weight 3 codewords)

3. an invalid CRC for the decoded data.

An error that is not detected by any of these three methods is undetectable.
IEEE 802.12 strengthens the alternation rule by employing, on each conductor, two

possible end delimiters ED2 and ED4 to mark the end of the sequence of codewords of a
given packet. The chosen delimiter indicates the expected weight of the next unbalanced
codeword. By a parity argument, any odd number of single-code-bit errors affecting
distinct codewords on a particular conductor will cause a violation of the alternation
rule, either within the sequence of codewords or at the end delimiter. It follows that the
alternation rule will detect any odd number of single-code-bit errors occurring anywhere
within an encoded data packet and affecting distinct codewords.

In order to check that IEEE Functional Requirement 5.6.3 on Hamming distance is
satisfied we must consider the effect of two further cases: two single-code-bit errors affect-
ing distinct codewords within an encoded data packet; and three single-code-bit errors,
two of which affect the same codeword. Both of these cases are dealt with by the result,
from computer search, that there are no solutions to the polynomial equation[

a(x) + x5rb(x)
]

mod g(x) = 0 where deg a(x), b(x) < 5 and integer r satisfies 0 < 5r < 8 · 4096.

5

(This result does not depend on the allocation of codewords to the parallel conductors,
nor on the choice of 5-bit/6-bit code table. It can be shown that the case of three single-
code-bit errors, two of which affect the same codeword, will always be detected by the
alternation rule and so in fact will be rejected prior to CRC checking.) Hence IEEE
802.12 achieves Hamming distance 4, as required by IEEE Functional Requirement 5.6.3.

5 Burst error detection

We have shown how IEEE 802.12 detects single-code-bit errors. We now consider the
detection of burst errors due, for example, to electrical interference affecting all four par-
allel conductors simultaneously. Figure 1 shows a burst error of duration two code bit
periods that can arbitrarily corrupt eight code bits (to any one of 28 − 1 = 255 corrupted
states). When the error burst straddles the boundary between codewords, as shown in
Figure 1, the error induced on the unencoded data can involve eight consecutive data
words D7, D6, . . . , D0 and as many as 40 consecutive data bits. Since the CRC is guaran-
teed to detect burst errors of only 32 or fewer consecutive data bits, we see that without
a careful choice of 5-bit/6-bit code table even an error burst as short as two code bits in
duration could lead to an undetectable error! Strengthening the burst error detection ca-
pability of the four-conductor proposals was a high priority in the standardisation process
of 100Mbit/s IEEE 802.3 and 802.12.

A major contribution to improving burst error detection arises from the geometrical
insight that the arrangement of codewords on conductors shown in Figure 1 is unnecessarily
constrained. Consider instead the arrangement shown in Figure 2, in which the codewords
are still allocated cyclically to the conductors but the transmission of codewords on two of
the conductors is offset by three code bit periods relative to the other two conductors. In
the offset arrangement, an error burst of four or fewer code bit periods can affect no more
than six consecutive data words and therefore no more than 30 data bits. Hence the CRC
will detect the data error induced by such a burst regardless of the choice of 5-bit/6-bit
code table.

We have just seen that the burst error detection capability of the four-conductor system
can be increased from one to four code bit periods simply by the offset arrangement of
Figure 2. In the remainder of this paper we show how to increase further the burst error
detection from four to seven code bit periods by means of the choice of 5-bit/6-bit code
table.

We must consider three possible configurations of an error burst of duration seven code
bit periods relative to eight successive codewords C7, C6, . . . , C0. These configurations are
labelled as A, B and C in Table 2, which shows the number of most significant bits
of codewords C1 and C0, and the number of least significant bits of codewords C7 and
C6, that are affected by the burst in each of the configurations. The seven-bit burst
shown in Figure 2 has configuration C. We use “most significant” to mean the leftmost
(lowermost, first transmitted) bits of a codeword and “least significant” to mean the
rightmost (uppermost, last transmitted) bits. Codewords C5, C4, C3 and C2 can be so
heavily corrupted by the burst, in each of the configurations, that we do not attempt to

6

control the errors affecting them.
To emphasise the difficulty of the code table selection problem, we count the number

of possible sets of codewords (C7, C6 . . . , C0) consistent with the alternation rule as (442−
2 · 122)4. (For each of the four wires containing codeword pairs such as C7 and C3, the
codewords of a pair can each take 32 + 12 = 44 possible values but we exclude pairs for
which both codewords have the same weight 2 or the same weight 4 since they would violate
the alternation rule.) Each of these sets can be corrupted to any one of 24·7−1 states by an
error burst of duration 7 code bit periods, in each of configurations A, B and C. Therefore
the total number of error cases handled simultaneously is (442 − 2 · 122)4(228 − 1) ∼ 1022.
The number of possible code tables to select from, that are consistent with the choices
already made to satisfy the DC balance and run length constraints (see Sections 2 and 3),
is (

32!
12!

)
(13 · 12!)2 ∼ 1046.

(The first factor arises by assigning the balanced codewords to 20 data words. The second
factor arises by choosing which weight 2 codeword out of 13 and which weight 4 codeword
out of 13 to eliminate, and then assigning the retained weight 2 and weight 4 codewords
in pairs to the remaining 12 data words.)

Jain [9] gives a very careful analysis of the error detection properties of the (previously
determined) FDDI 4-bit/5-bit transmission code, according to a model of physical errors
corrupting code bits. However we are not aware of any previous analysis which shows how
to choose a block encoding in advance so that all possible induced data errors arising from
a large given set of physical transmission errors will be detectable by a CRC calculated on
the unencoded data and using a predetermined CRC polynomial. A summary of the burst
error detection properties of IEEE 802.12 was given in [7] but no indication was given as
to how the code table was selected to achieve these properties.

5.1 Configurations A and C

We will use linear algebra (Sections 5.1.1 and 5.1.2) and combinatorial reasoning (Sec-
tion 5.1.3) to deal with configurations A and C, as defined in Table 2 with respect to
eight codewords C7, C6, . . . , C0 corresponding to at most 40 data bits. A key observation
is that, for both configurations, there are two codewords that can be corrupted in only
one bit position. We will exploit this to avoid all 255 undetectable induced data errors
occupying at most 40 bits. From (2), these errors are represented by the 255 polynomials

S = {j(x)g(x) : j(x) 6= 0, j(x) ∈ P7},

where P7 denotes the set of polynomials of degree at most 7.
We wish to represent each of the polynomials of S as comprising eight 5-bit data

groups. To do so, let P4 denote the set of polynomials of degree at most 4 and define the
mappings Ti : P7 7→ P4 for i = 0, 1, . . . , 7 by

x35T7(j(x)) + x30T6(j(x)) + . . . + x5T1(j(x)) + T0(j(x)) := j(x)g(x) for j(x) ∈ P7.
(3)

7

It is easy to check that each Ti is a linear map. Although some of the linear algebra
arguments we present could be viewed more succintly in the framework of vector spaces,
we will often use an explicit treatment in terms of matrices. We write

Ti(j(x))←→ Eij for i = 0, 1, . . . 7 and j(x) ∈ P7,

where Ei is a 5×8 matrix, and we use the natural correspondence between the polynomial
j(x) = j7x

7 + j6x
6 + . . . + j0 and the vector j = (j7, j6, . . . , j0)T . This allows us to write

j(x)g(x)←→ ((E7j)T , (E6j)T , . . . , (E0j)T)T for j(x) ∈ P7.

Now from (1) and (3) we can write the Ei explicitly, in particular:

E0 =


0 0 0 1 1 1 0 1
0 0 0 0 1 1 1 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

 , E1 =


1 0 1 1 0 1 1 0
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 0 1 1 0
0 0 1 1 1 0 1 1

 ,

E6 =


0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0

 , E7 =


1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

 .

For example, taking j(x) = x6 + x3 + x2 + 1, we have T0(x6 + x3 + x2 + 1) ←→
E0[01001101]T = [10011]T ←→ x4 + x + 1.

Denote by Mi (respectively Li) the set of possible induced 5-bit data errors arising
from an arbitrary corruption of the i most significant (respectively least significant) bit
positions of any 6-bit codeword. For each codeword, each of the 2i−1 possible corruptions
of each codeword that is itself a valid codeword results in an induced data error. We will
deal with configurations A and C simultaneously by means of the following plan:

(P1) Determine the set P of triples of distinct 5-bit non-zero values {a, b, c} for which
the 16 ordered pairs in {0, a, b, c} × {0, a, b, c} intersect with the 256 ordered pairs
of 5-bit values {(E1j, E0j) : j(x) ∈ P7} only in the element (0, 0).

(P2) Determine the set P ′ of triples of distinct 5-bit non-zero values {α, β, γ} for which
the 16 ordered pairs in {0, α, β, γ}× {0, α, β, γ} intersect with the 256 ordered pairs
of 5-bit values {(E7j, E6j) : j(x) ∈ P7} only in the element (0, 0).

(P3) Select a 5-bit/6-bit code mapping so that, for some {a, b, c} ∈ P and some {α, β, γ} ∈
P ′, we have M1 ⊆ {a, b, c} and L1 ⊆ {α, β, γ}.

This will ensure that, regardless of the values of the eight codewords (C7, C6, . . . , C0)
carried on the four conductors, any error burst having configuration A or C will be de-
tectable by means of invalid codewords and the CRC. In the case of configuration A, we

8

avoid all 255 undetectable errors in S by controlling the induced 5-bit data errors from
change of the least significant bit of any values of codewords C7 and C6. In the case of
configuration C, we do likewise by controlling the induced 5-bit data errors from change
of the most significant bit of any values of codewords C1 and C0.

5.1.1 Determination of P

In this subsection we determine the possible triples {a, b, c} of P, as specified in (P1). We
write col(A) for the column space of a matrix A.

The nullspace of the matrix Ei (namely the set of vectors j for which Eij = 0) can
be represented as the column space of a matrix Ni. For i = 0, 1, 6 and 7 we calculate Ni

explicitly as:

N0 =



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


, N1 =



0 0 0
0 0 0
0 0 0
0 1 0
0 0 1
1 0 0
1 1 0
1 0 1


, N6 =



0 1 0
0 0 1
0 0 0
0 1 0
1 0 0
0 0 0
0 1 0
0 0 1


, N7 =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


.

By inspection, each of the matrices Ei (i = 0, 1, 6, 7) has rank 5 and each of the matrices
Ni (i = 0, 1, 6, 7) has rank 3. Likewise, the matrices E0 + E1 and E6 + E7 also have rank
5, and their corresponding nullspaces are given by the column space of respective matrices
N01 and N67, also of rank 3:

N01 =



1 0 0
0 1 0
1 0 0
1 1 0
0 1 1
0 1 0
0 0 1
0 1 0


, N67 =



1 0 0
0 0 1
0 1 0
0 1 0
1 1 0
1 0 0
1 0 1
0 1 1


.

We now constrain the possible triples of P.

Lemma 1 No vector contained in col(E1N0), col(E0N1) or col(E0N01) can appear in a
triple of P.

Proof: Consider a non-zero polynomial j(x) ∈ P7 whose associated vector j satisfies
E0j = 0, so that j is contained in col(N0). By the definition of P, the ordered pair
(E1j, E0j) = (E1j, 0) cannot occur as an element of P×{0}; therefore no vector contained
in col(E1N0) can appear in a triple of P. Similarly, no vector contained in col(E0N1)
can appear in a triple of P. Furthermore, consider a vector j contained in col(N01). The

9

ordered pair (E1j, E0j) = ((E1+(E0+E1))j, E0j) = (E0j, E0j) cannot occur as an element
of P × P and so no element of col(E0N01) can appear in a triple of P. �

The matrices E1N0, E0N1, and E0N01 involved in Lemma 1 each have rank 3:

E1N0 =


1 0 1
1 1 0
1 1 1
0 1 1
0 0 1

 , E0N1 =


0 1 0
0 1 1
1 1 1
0 1 1
1 0 1

 , E0N01 = E1N01 =


1 0 1
0 0 0
0 0 1
0 1 1
0 1 0

 .

Lemma 2 If {a, b, c} is a triple in P, and a+[00101]T 6∈ {0, b, c}, then {a+[00101]T , b, c}
is a triple in P.

Proof: If, for some j(x) ∈ P7, we have (E1j, E0j) = (a1, a0) then

(E1(j + [11100000]T), E0(j + [11100000]T)) = (a1 + [00101]T , a0)

and
(E1(j + [00000111]T), E0(j + [00000111]T)) = (a1, a0 + [00101]T).

The condition that a+[00101]T 6∈ {0, b, c} ensures that the elements of {a+[00101]T , b, c}
are distinct and non-zero. �

Lemmas 1 and 2 point to the use of Table 3, in which the 32 possible 5-bit induced data
error values are arranged in a 4 × 4 table, with values that differ by [00101]T grouped in
pairs. The table entries are arranged so that offsets of col(E1N0) appear horizontally, off-
sets of col(E0N1) appear vertically, and the main diagonal contains col(E0N01). Lemma 1
excludes any non-zero 5-bit value contained in the uppermost row (col(E1N0)), the left-
most column (col(E0N1)), or the main diagonal (col(E0N01)) of the table from appearing
in a triple of P. The elements of all triples {a, b, c} in P must therefore be drawn from
the 12 remaining non-zero 5-bit values, which are highlighted in Table 3.

We next introduce a lemma on the pairwise intersection of offsets of column spaces of
the matrices E0N1, E1N0 and E0N01, which further illustrates the underlying structure
of Table 3.

Lemma 3 For any 5-bit vectors h and h′, there is a 5-bit vector h′′ for which

(h + col(E0N1)) ∩ (h′ + col(E1N0)) = {h′′, h′′ + [00101]T }.

Similar statements hold for the intersection of offsets of col(E0N1) and col(E0N01), and
for the intersection of offsets of col(E1N0) and col(E0N01).

Proof: Let the columns of E0N1 be (v1, v2, v3) and the columns of E1N0 be (w1, w2, w3).
The intersection of h + col(E0N1) and h′ + col(E1N0) is given by the solutions of

h + a1v1 + a2v2 + a3v3 = h′ + b1w1 + b2w2 + b3w3 (4)

10

for 0–1 coefficients a1, a2, a3, b1, b2, b3, or equivalently

h + h′ = [E0N1;E1N0] [a1; a2; a3; b1; b2; b3]T . (5)

Now, by inspection, the 5×6 matrix [E0N1;E1N0] has full rank 5 and so (5) has a solution
[a1; a2; a3; b1; b2; b3]T for all values of h and h′. Furthermore, by the fundamental theorem
of linear algebra, [E0N1;E1N0] has nullspace of dimension 1, and we can verify directly
that this nullspace is {[000000]T , [100111]T }. Therefore (5) has exactly two solutions for all
h and h′, namely [a1; a2; a3; b1; b2; b3]T and [a1; a2; a3; b1; b2; b3]T +[100111]T . Equivalently,
(4) has exactly two solutions, namely h′′ = h+a1v1 +a2v2 +a3v3 and h′′ +v1 = h′′ +w1 +
w2 + w3 = h′′ + [00101]T for some 5-bit vector h′′.

Similar arguments hold for the other intersections. �

Proposition 4 The triples {a, b, c} of P comprise all sets of three distinct highlighted
5-bit values appearing in the same row or column of Table 3.

Proof: The 5-bit values of Table 3 are arranged in pairs, the members of each pair differing
by [00101]T . By Lemma 1, only the 12 highlighted values (arranged in 6 pairs) can belong
to a triple {a, b, c} of P, since these are the 5-bit values that are not contained in col(E1N0),
col(E0N1) or col(E0N01). Suppose a is such a highlighted value and belongs to a triple
{a, b, c} of P; we now determine the allowable values of b and c for this triple.

Since E1 has full rank 5, we can find j(x) ∈ P7 satisfying E1j = a. In order to
satisfy the definition of P, as specified in (P1), b cannot take any value E0k for which
there is some k(x) ∈ P7 satisfying E1k = a. The 8 values k satisfying E1k = a are given
by k ∈ j + col(N1), so this means that b cannot take any of the 4 pairs of values in
E0j + col(E0N1); these values comprise some column of Table 3. Likewise we can find
j′(x) ∈ P7 satisfying E0j

′ = a and, by a similar argument, b cannot take any of the 4 pairs
of values in E1j

′ + col(E1N0); these values comprise some row of Table 3.
We next determine which of the 6 highlighted pairs of data values are removed from

consideration by the exclusion of the values in this column and row of Table 3. We claim
that the excluded column E0j +col(E0N1) intersects the row a+col(E1N0) containing the
value a in a pair of values lying on the main diagonal col(E0N01) of Table 3. To establish
this, suppose

k ∈ (E0j + col(E0N1)) ∩ (a + col(E1N0)) . (6)

We know from Lemma 3 that the right-hand side of (6) comprises a pair of values contained
in some row and column of Table 3. Now from (6) we can write

k = E0j + E0n1 = a + E1n0

for some n1 ∈ N1 and n0 ∈ N0. Substitution of a = E1j and E1n1 = E0n0 = 0 gives

k = E0(j + n0 + n1) = E1(j + n0 + n1).

Setting n = j + n0 + n1 gives k = E0n = E1n and so, by definition of N01, we obtain
k ∈ col(E0N01) as claimed. By a similar argument, the excluded row E1j

′ + col(E1N0)

11

intersects the column a+col(E0N1) containing the value a in a pair of values lying on the
main diagonal of Table 3.

In summary, given a highlighted value a belonging to a triple {a, b, c} of P, each of b
and c is restricted to one of the 5 highlighted values lying in either the same row or the
same column of Table 3 as a. Application of this result to the possible values of a and
c associated with a given value of b then forces any triple {a, b, c} of P to be formed by
taking three out of four highlighted values in the same row or column of Table 3.

It remains to show that any such choice does indeed give a triple {a, b, c} satisfying
the definition of P. From Lemma 2 and the proof of Lemma 1, it is sufficient to show that
any ordered pair of highlighted values (x, y) taken from the same row or column of Table 3
(where x and y need not be distinct) does not equal (E1k, E0k) for any k(x) ∈ P7. We
will assume (x, y) are taken from the same row; the argument when they are taken from
the same column is similar. Suppose, for a contradiction, that (E1k, E0k) = (x, y) where

x, y ∈ (E1j + col(E1N0)) \ (E0j + col(E0N1)) . (7)

Then x = E1j + E1n0 for some n0 ∈ N0. Comparison with x = E1k shows that

k = j + n0 + n1 for some n1 ∈ N1.

Applying E0 to both sides we obtain y = E0j + E0n1, which contradicts (7). �

We illustrate the proof of Proposition 4 by means of an example. Suppose we fix
the element a to be [00001]T . Take j = [00111000]T and j′ = [00001011]T to satisfy
E1j = E0j

′ = a. Then E0j = [01000]T and E1j
′ = [11011]T . From Table 3, we can express

the forbidden offsets E0j + col(E0N1) and E1j
′ + col(E1N0) as [11100]T + col(E0N1) and

[11110]T + col(E1N0) respectively. In other words, we exclude the 6 highlighted values
[00010]T , [00111]T , [01101]T , [01000]T , [01100]T and [01001]T contained in the third column
and second row of data values. This leaves the 5 highlighted values [00100]T , [11111]T ,
[11010]T , [11101]T and [11000]T as possible values for b and c. It follows that the elements
b and c occurring with a in a triple must belong either to {[00100]T , [11101]T , [11000]T }
or to {[00100]T , [11111]T , [11010]T }.

From Proposition 4 we determine the triples {a, b, c} of P to be all sets of three distinct
elements taken from a single row of Table 4. By construction, each of these rows has the
form

{u, u + [00101]T , v, v + [00101]T }. (8)

5.1.2 Determination of P ′

In this subsection we determine the possible triples (α, β, γ) of P ′, as specified in (P2).
The analysis is similar to that for the triples {a, b, c} of P, so we will simply state the
results without proof.

Lemma 5 No vector contained in col(E7N6), col(E6N7) or col(E6N67) can appear in a
triple of P ′.

12

The matrices E7N6, E6N7, and E6N67 each have rank 3:

E7N6 =


0 1 0
0 0 1
0 0 0
0 1 0
1 0 0

 , E6N7 =


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

 , E6N67 = E7N67 =


1 0 0
0 0 1
0 1 0
0 1 0
1 1 0

 .

Lemma 6 If {α, β, γ} is a triple in P ′, and α+[01000]T 6∈ {0, β, γ}, then {α+[01000]T , β, γ}
is a triple in P ′.

Table 5 is a 4× 4 arrangement of the 32 possible 5-bit induced data error values, with
values that differ by [01000]T grouped in pairs. Offsets of col(E7N6) appear horizontally,
offsets of col(E6N7) appear vertically, and the main diagonal contains col(E6N67).

Lemma 7 For any 5-bit vectors h and h′, there is a 5-bit vector h′′ for which

(h + col(E6N7)) ∩ (h′ + col(E7N6)) = {h′′, h′′ + [01000]T }.

Similar statements hold for the intersection of offsets of col(E6N7) and col(E6N67), and
for the intersection of offsets of col(E7N6) and col(E6N67).

Proposition 8 The triples {α, β, γ} of P ′ comprise all sets of three distinct highlighted
5-bit values appearing in the same row or column of Table 5.

The triples {α, β, γ} of P ′ comprise all sets of three distinct elements taken from a
single row of Table 6. Each of these rows has the form

{µ, µ + [01000]T , ν, ν + [01000]T }. (9)

5.1.3 Code selection as specified in (P3)

In this subsection we complete the analysis of configurations A and C by selecting a 5-bit/6-
bit code mapping as specified in (P3). In fact we shall identify a large set of mappings, all
of which deal with configurations A and C, from which we can select one in Section 5.2
that also deals with configuration B. In contrast to the study of linear coding, here we
are not concerned with minimising the weight of the induced data errors but rather with
ensuring that the sets M1 and L1 are small and controllable: specifically, no larger than
some set {a, b, c} ∈ P and some set {α, β, γ} ∈ P ′ respectively. We shall build up the
5-bit/6-bit mapping in stages, keeping track of M1 and L1 as each group of codewords is
assigned.

Figure 3 shows a template assignment of 4 balanced and 4 unbalanced code words to 6
data words, with the value of x yet to be specified. The associated graph shows the induced
data errors arising from change of the most significant code bit position (left-pointing arcs)
and least significant code bit position (right-pointing arcs) of the codewords. We see that
the entries of M1 and L1 resulting just from this template are {a, b} and {α, β} respectively.

13

For example, change of the least significant bit position of the codeword 101100 results
in the codeword 101101, which induces the data error (x + a) + (x + a + α) = α; this is
represented by a right-pointing arc labelled α that connects the vertices associated with
these two codewords.

Starting from the codeword 001100 in Figure 3, there is a path to the codeword 101101
that induces the data error a + α; and starting from the codeword 110011, there is a path
to the codeword 010010 that induces the data error b+β. Since the initial two codewords
of these paths are both assigned to the same data word (x) and the final two codewords
are both assigned to the same data word, for consistency we must impose the constraint
a + α = b + β, or equivalently

a + b = α + β. (10)

Also we can interchange the data word labels x + a, x + b, or the data word labels x + α,
x + β, or both, without changing the current sets M1 and L1. This allows additional
freedom of choice for Section 5.2 and is represented in Figure 3 by arcs connecting these
pairs of data words.

Assume that
the 5× 3 matrix [a;α; b] has rank 3, (11)

and write G for the eight data words of col([a;α; b]). Taking account of (10), the six data
words of Figure 3 can then be represented as (x + G) \ {x + a + b, x + α + b}, so we have
assigned six of the eight data words contained in the offset x + G of G. Assume further
that

the 5× 5 matrix [a;α; b; c; γ] has rank 5, (12)

so that we can consider the 32 5-bit data words to comprise four offsets of G with offset
representatives x0, x1, x2 and x3, where:

x0 ∈ G,
x1 ∈ c + G,
x2 ∈ γ + G,
x3 ∈ c + γ + G.

 (13)

We can then apply the template assignment of Figure 3 to the offsets whose representatives
are x0, x1 and x2, in each case assigning codewords to six out of the eight data words
of the offset. Figure 4 shows this assignment, where the most and least significant bit
of each set of eight codewords follows the pattern of the template while the central four
bits always have weight 2. This assigns 24 codewords (all of whose central four bits have
weight 2) to 18 data words while restricting the current sets M1 and L1 to {a, b} and
{α, β} respectively.

Figure 5 shows an assignment of a further 12 codewords to all 8 data words of the
offset whose representative is x3. This assignment does not enlarge the sets M1 and L1,
and admits the transpositions of data words indicated by arcs.

Before assigning codewords to the remaining six data words, we shall apply the con-
straint (10), followed by the constraint (12) (which implies (11)). From (8), each row of
Table 4 gives rise to three possible values of a + b, independently of which distinct three

14

of the four row entries are chosen for the triple {a, b, c}. Similarly, from (9), each row of
Table 6 gives rise to three possible values of α + β. Comparison of these values for a + b
and α+β yields four possible pairings of a row from Table 4 with a row from Table 6 such
that (10) is satisfied, as shown in Table 7. From each row of Table 7, we form a triple
{a, b, c} ∈ P by taking any three distinct elements from the first set of four data values.
This is paired with a triple {α, β, γ} ∈ P ′ formed by taking any three distinct elements
from the second set of four values in that row; the values of c and γ are thereby deter-
mined. Constraint (12) removes the second row of Table 7 from consideration, leaving
3 · 4 · 4 = 48 possible sets of values {a, b, c, α, β, γ}.

We now assign eight codewords to the remaining six data words, and thereby fix the
values of x0, x1 and x2. By translation of all the data words we can take x0 to be 0. The
ten unassigned codewords are

001110, 110001, 011100, 100011, 010001, 101110, 100010, 011101, 100001, 011110,

of which one codeword of weight 2 and one of weight 4 must be excluded (see Section 3).
Of these codewords, the pairs

(010001, 110001) and (001110, 101110) (14)

differ only in the most significant bit position, while the pairs

(100010, 100011) and (011100, 011101) (15)

differ only in the least significant bit position. The six unassigned data words are

a + b, α + b, x1 + a + b, x1 + α + b, x2 + a + b, x2 + α + b. (16)

Let d1 and d2 be distinct data words in (16). From (13), the only value of d1 + d2 lying in
G is a + α and the only values of d1 + d2 lying in c + G are x1 and x1 + a + α. It follows
from (P3) that if either the first or second pair of codewords in (14) is contained in the
code then d1 + d2 = c for the corresponding data words d1, d2 and

x1 = c or c + a + α. (17)

Similarly, if either the first or second pair of codewords in (15) is contained in the code
then d1 + d2 = γ and

x2 = γ or γ + a + α. (18)

Until this point all unbalanced codeword pairs have been chosen to be complements
of each other, for convenience of implementation. Suppose, for a contradiction, that we
can satisfy (P3) while maintaining this property. Then either all four codewords of (14)
or all four codewords of (15) will be retained in the code (or both); suppose the former.
By assumption the retained codewords 010001 and 101110 must both be assigned to some
data word d1 of (16). The codewords 110001 and 001110 must be assigned to distinct data
words d2, d3 of (16), but then by the reasoning leading to (17) we must have d1 + d2 = c
and d1 + d3 = c which is a contradiction. (One might attempt to avoid this contradiction

15

by relaxing (P3) to allow M1 = {a, b, c, d}, where the set {a, b, c, d} comprises all four
entries of one of the rows of Table 4 and then, from (8),

c + d = a + b. (19)

But this would result in d1 + d2 = c and d1 + d3 = d, which from (19) would imply
d2 + d3 = a + b, which is not possible from (16).) The argument when the four codewords
of (15) are retained instead of those of (14) is similar (and there is likewise no advantage
in allowing L1 = {α, β, γ, δ} in (P3) for some row {α, β, γ, δ} of Table 6).

Therefore the code must contain at least one pair of unbalanced codewords that are
not complements of each other. Figure 6 shows an assignment of eight codewords to
two possible listings of the remaining six data words (shown on the left and on the right
of the diagram), both of which will be considered in Section 5.2. The assignment uses
x1 = c and x2 = γ, in accordance with (17) and (18), to give final sets M1 = {a, b, c}
and L1 = {α, β, γ} satisfying (P3), and excludes the codewords 010001 and 011101. It
contains only one pair of unbalanced codewords that are not complements of each other.
The boxed data words in Figure 6 can be arbitrarily arranged since the corresponding
codewords do not map to any other valid codewords under change of the most significant
or least significant bit.

Note that we can make alternative assignments to that of Figure 6 that satisfy (P3)
(though these will not be considered in Section 5.2), for example we can:

• set x1 = c + a + α and interchange the labels x1 + a + b and x1 + α + b in Figure 6,
or set x2 = c + a + α and interchange the labels x2 + a + b and x2 + α + b, or both

• exclude the codewords 100010 and 101110 and have only one non-complementary
unbalanced codeword pair; this is equivalent to the assignment of Figures 4, 5 and 6
under complementation of all the codewords of the 5-bit/6-bit mapping

• exclude the codewords 010001 and 101110 from (14) and arrange to have final sets
M1 = {a, b} and L1 = {α, β, γ}; however this results in two non-complementary
unbalanced codeword pairs. Similarly we can exclude codewords 100010 and 011101
and have final sets M1 = {a, b, c} and L1 = {α, β}.

5.2 Configuration B

In Section 5.1 we used linear algebra and combinatorial reasoning to control the sets M1

and L1 and so deal with configurations C and A respectively of Table 2. In this section
we use computer search to select one of the large class of 5-bit/6-bit mappings already
identified, in order to deal with configuration B. Under configuration B, only the two most
significant bit positions of C1 and C0, and only the two least significant bit positions of C7

and C6, can change. Our objective here is to arrange for the sets M2 and L2 (as defined in
Section 5.1) jointly to avoid all 255 undetectable errors in S — whereas for configurations
C and A we relied on the sets M1 and L1 individually.

We begin by reviewing the set of 5-bit/6-bit mappings previously identified in Sec-
tion 5.1. There are 48 possible sets of values {a, b, c, α, β, γ}, represented by the first,

16

third and fourth rows of Table 7. For each of these, there are: 26 possible rearrangements
of data words in Figure 4; 22 possible rearrangements of data words in Figure 5; 2 possible
rearrangements of data words arising from interchange of a with b; 3! possible rearrange-
ments of data words for each of the 2 listings (left-hand and right-hand) in Figure 6; and 8
possible choices of x3 ∈ c+γ +G. In addition, for each of the above possibilities there are
3! possible further rearrangements not previously mentioned, arising from permutation of
the labels x0, x1, x2 in Figure 4. (There is no need to consider interchange of α with β
because it is equivalent to a combination of other rearrangements.) This gives a total of
219 · 33 > 107 code mappings across which the sets M2 and L2 (and hence the behaviour
under configuration B) can vary.

We deal with configuration B as follows:

(P4) Determine which of the 219 ·33 identified 5-bit/6-bit mappings, all of which deal with
configurations A and C, also have the property that

E1j, E0j ∈M2 ∪ {0} and E7j, E6j ∈ L2 ∪ {0} (20)

holds for j(x) ∈ P7 only when j(x) = 0.

By computer search, (P4) gives rise to 192 code mappings associated with 5 of the 48 sets
of values {a, b, c, α, β, γ}, as summarised in Table 8. The mapping chosen for the IEEE
802.12 code presented in Table 1 has

a = [11101]T , b = [00001]T , c = [00100]T , α = [00011]T , β = [11111]T , γ = [01011]T .

The values (x0, x1, x2) = (0, c, γ) are assigned to the three offsets of Figure 4 without
permutation. The value x3 is set as c+γ+b. The members of data word pairs (x0+a, x0+b),
(x2 +a, x2 + b) and (x3 +α, x3 +β) are interchanged. The right-hand listing of data words
in Figure 6 is used, with the boxed data words occurring without permutation. These
choices result in the sets

M2 = {[00001]T , [00100]T , [01001]T , [01111]T , [10001]T , [10100]T , [10101]T ,

[11000]T , [11001]T , [11100]T , [11101]T }, (21)
L2 = {[00011]T , [00100]T , [00101]T , [00110]T , [00111]T , [01001]T , [01011]T ,

[10101]T , [10110]T , [11000]T , [11011]T , [11100]T [11110]T , [11111]T }. (22)

It is possible to verify by hand that the sets (21) and (22) are in accordance with
(P4), as we now outline. From (20) and (21) there are 12 values of E0j to be checked; for
example consider E0j = [00001]T . By inspection of the explicit representation of E0 in
Section 5.1 we see that E0[00001011]T = [00001]T , therefore

j ∈ [00001011]T + col(N0). (23)

Applying E1 to (23) we find that E1j ∈ [11011]T + col(E1N0), whereas according to (20)
we impose E1j ∈ M2 ∪ {0}. It follows that E1j = [01001]T or [10101]T . If the former,
then comparison with (23) forces j = [00001011]T + [11000000]T = [11001011]T so that

17

E6j = [00001]T 6∈ L2∪{0}; if the latter, then j = [00001011]T +[01000000]T = [01001011]T

so that E6j = [01000]T 6∈ L2 ∪ {0}. In either case the result is in accordance with (P4).
The checking for the other 11 possible values for E0j is similar.

We mention in closing that the subset of the 5-bit/6-bit mappings of Section 5.1 that
also deal with configuration B could have more than the 192 elements described above.
The reason is that, for ease of computer implementation and hand checking, (P4) does not
attempt to take advantage of the alternation rule (strengthened by the use of alternative
end delimiters as described in Section 4). For example, (P4) requires the CRC to detect
a 7-bit error burst having configuration B that corrupts codeword C3 from weight 3 to
weight 4 without changing the weight of codeword C7, whereas such an error burst is
guaranteed to be detected by the alternation rule.

6 Conclusion

We have presented the first complete explanation of the design principles of the IEEE
802.12 coding scheme. This code has near-perfect DC balance and small run length, and
allows the detection within an encoded data packet of any three single-bit errors or any
7-bit error burst that arbitrarily corrupts codewords carried on four parallel channels. A
major part of the design effort was directed towards burst error detection, combining:
geometrical insight (offset transmission of codewords); linear algebra and combinatorial
reasoning (to deal with configurations A and C); and computer search (to deal with con-
figuration B).

Acknowledgements

We are grateful to David Cunningham and Pat Thaler for their assistance in bringing this
coding scheme to standardisation in IEEE 802.12.

18

References

[1] G. Watson, A. Albrecht, J. Curcio, D. Dove, S. Goody, J. Grinham, M. Spratt, and
P. Thaler, “The Demand Priority MAC protocol,” IEEE Network, pp. 28–34, Jan/Feb
1995.

[2] LAN/MAN Standards Committee of the IEEE Computer Society, IEEE Std 802.12−
1995: Demand Priority Access Method, Physical Layer and Repeater Specification for
100 Mb/s Operation. New York: IEEE, Nov 1995.

[3] A. Albrecht and P. Thaler, “Introduction to 100VG-AnyLAN and the IEEE 802.12
Local Area Network standard,” Hewlett-Packard Journal, vol. 46, pp. 6–12, August
1995.

[4] E. Rabinovitch, “(Barely) managing ATM,” SunWorld Online, vol. 10, Aug 1996,
<http://sunsite.uakom.sk/sunworldonline/swol-08-1996/swol-08-atm.html>.

[5] LAN/MAN Standards Committee of the IEEE Computer Society, IEEE Std 802.3 −
2002: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access
Method and Physical Layer Specifications. New York: IEEE, Mar 2002.

[6] A. Coles, D. Cunningham, J. Curcio, Jr, D. Dove, and S. Methley, “Physical signalling
in 100VG-AnyLAN,” Hewlett-Packard Journal, vol. 46, pp. 18–26, August 1995.

[7] S. Crouch and J. Jedwab, “Coding in 100VG-AnyLAN,” Hewlett-Packard Journal,
vol. 46, pp. 27–32, August 1995.

[8] Local and Metropolitan Area Networks Standards Committee, Functional Require-
ments, IEEE Project 802. IEEE, draft 6.10, revised 12 November 1991.

[9] R. Jain, “Error characteristics of fiber distributed data interface (FDDI),” IEEE Trans.
Comm., vol. 38, pp. 1244–1252, 1990.

19

Data word Weight 3
codeword

00001 101100
00011 001101
00101 010101
00110 001110
00111 001011
01000 000111
01001 100011
01010 100110
01101 011010
01111 101001
10001 100101
10011 010110
10100 111000
10110 011001
11000 110001
11001 101010
11011 110100
11100 011100
11101 010011
11111 110010

Data word Weight 2 Weight 4
codeword codeword

00000 001100 110011
00010 100010 101110
00100 001010 110101
01011 000110 111001
01100 101000 010111
01110 100100 011011
10000 000101 111010
10010 001001 110110
10101 011000 100111
10111 100001 011110
11010 010100 101011
11110 010010 101101

Table 1: The IEEE 802.12 5-bit/6-bit transmission code

Configuration # most significant # least significant
positions in C1 and C0 positions in C7 and C6

A 3 1
B 2 2
C 1 3

Table 2: Configurations A, B and C for a 7-bit error burst

20

Offset of col(E0N1)
00000 01110 11100 10010

00000 00000, 00101 01110, 01011 11100, 11001 10010, 10111

Offset of 11110 11110, 11011 10000, 10101 00010, 00111 01100, 01001

col(E1N0) 01111 01111, 01010 00001, 00100 10011, 10110 11101, 11000

10001 10001, 10100 11111, 11010 01101, 01000 00011, 00110

Table 3: Transpose of induced data error vectors, arranged horizontally by offsets of
col(E1N0) and vertically by offsets of col(E1N0). The main diagonal is col(E0N01).

Set #
1 00010 00111 01100 01001
2 00001 00100 11101 11000
3 11111 11010 01101 01000
4 00001 00100 11111 11010
5 00010 00111 01101 01000
6 01100 01001 11101 11000

Table 4: The sets of four transposed data error vectors from which the triples {a, b, c} of
P are derived

21

Offset of col(E6N7)
00000 00001 10010 10011

00000 00000, 01000 00001, 01001 10010, 11010 10011, 11011

Offset of 10000 10000, 11000 10001, 11001 00010, 01010 00011, 01011

col(E7N6) 00100 00100, 01100 00101, 01101 10110, 11110 10111, 11111

10100 10100, 11100 10101, 11101 00110, 01110 00111, 01111

Table 5: Transpose of induced data error vectors, arranged horizontally by offsets of
col(E7N6) and vertically by offsets of col(E7N6). The main diagonal is col(E6N67).

Set #
1 00010 01010 00011 01011
2 00101 01101 10111 11111
3 10101 11101 00110 01110
4 00101 01101 10101 11101
5 00010 01010 00110 01110
6 00011 01011 10111 11111

Table 6: The sets of four transposed data error vectors from which the triples {α, β, γ} of
P ′ are derived

Set # a + b = Set #
for P α + β for P ′

2 00001 00100 11101 11000 11100 6 00011 01011 10111 11111
3 11111 11010 01101 01000 10010 2 00101 01101 10111 11111
4 00001 00100 11111 11010 11011 3 10101 11101 00110 01110
6 01100 01001 11101 11000 10100 6 00011 01011 10111 11111

Table 7: Sets of four transposed data error vectors for triples {a, b, c} ∈ P and {α, β, γ} ∈
P ′ that admit a common value for a + b and α + β

code mappings {a, b} c {α, β} γ a + b = α + β

64 {00001, 11101} 00100 {00011, 11111} 01011 11100
64 {00001, 11101} 11000 {00011, 11111} 10111 11100
32 {00100, 11000} 11101 {00011, 11111} 10111 11100
16 {00100, 11000} 11101 {01011, 10111} 11111 11100
16 {00100, 11111} 00001 {01110, 10101} 00110 11011

Table 8: Numbers of code mappings arising from (P4), and the associated transposed data
error vectors

22

D7 D6 D5 D4 D3 D2 D1 D0

· · · 01111 00110 10001 11110 10111 01001 00111 01011 · · ·

...

1
0
0
0
0
1

1
0
0
1
0
1
...

C3

C7

...

1
1
0
0
0
1

0
1
1
1
0
0
...

C2

C6

...

1
1
0
1
0
0

1
0
1
0
0
1
...

C1

C5

...

1
0
0
1
1
1

0
1
0
0
1
0
...

C0

C4

Figure 1: Transmission of codewords over four parallel conductors

23

D7 D6 D5 D4 D3 D2 D1 D0

· · · 01111 00110 10001 11110 10111 01001 00111 01011 · · ·

...

1
0
0
0
0
1

1
0
0
1
0
1
...

C3

C7

...

1
1
0
0
0
1

0
1
1
1
0
0
...

C2

C6

...

1
1
0
1
0
0

1
0
1
0
0
1
...

C1

C5

...

1
0
0
1
1
1

0
1
0
0
1
0
...

C0

C4

Figure 2: Offset transmission of codewords

24

x 001100 110011

x + a 101100

x + α 001101

x + b 010011

x + β 110010

x + a + α 010010 101101

�
�

�
�

t
t
t

t

�
�a

�

�
a

$
%
α�

�
α

t

t
t
t

�

�
b

�
�b

�

�
β

$
%β

Figure 3: Template assignment of codewords to data words

x0 001100 110011
x0 + a 101100
x0 + α 001101
x0 + b 010011
x0 + β 110010
x0 + a + α 010010 101101

�
� �

�

x1 001010 110101
x1 + a 101010
x1 + α 001011
x1 + b 010101
x1 + β 110100
x1 + a + α 010100 101011

�
� �

�

x2 000110 111001
x2 + a 100110
x2 + α 000111
x2 + b 011001
x2 + β 111000
x2 + a + α 011000 100111

�
� �

�

Figure 4: Template assignment applied to three of the four offsets

25

x3 100100 011011

x3 + α 100101

x3 + β 011010

x3 + a + α 000101 111010

x3 + α + b 101000 010111

x3 + b 101001

x3 + a 010110

x3 + a + b 001001 110110

�
�

�
�

t
t
t

�
�

a

�
�α

t
t
t

�
�b

�
�β

t
t
t

�
�

a

�
�α

t
t
t

�
�b

�
�β

Figure 5: Code structure for fourth offset

a + b 100010 101110 α + b

x1 + a + b 001110 x1 + α + b

x2 + a + b 100011 x2 + α + b

α + b 011100 a + b

x1 + α + b 110001 x1 + a + b

x2 + α + b 100001 011110 x2 + a + b

t
t
t

�
�c

$
%
γ

Figure 6: Code structure for remaining six data words

26

